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Abstract. We analyze the Fubini-Furlan-Rosetti sum rule in the framework of covariant baryon chiral
perturbation theory to leading one-loop accuracy and including next-to-leading–order polynomial contri-
butions. We discuss the relation between the subtraction constants in the invariant amplitudes and certain
low-energy constants employed in earlier chiral perturbation theory studies of threshold neutral pion pho-
toproduction off nucleons. In particular, we consider the corrections to the sum rule due to the finite pion
mass and show that below the threshold they agree well with determinations based on fixed-t dispersion
relations. We also discuss the energy dependence of the electric dipole amplitude E0+.

PACS. 11.55.Hx Sum rules – 12.39.Fe Chiral Lagrangians – 13.60.Le Meson production

1 Introduction

The Fubini-Furlan-Rosetti (FFR) sum rule was derived in
the sixties utilizing the soft-pion techniques of current al-
gebra [1]. It relates the nucleon anomalous magnetic mo-
ment to an integral over the invariant amplitude A1 of
pion photoproduction

κv,s =
8m2

N

eπgπN

∫

dν′

ν
Im A

(+,0)
1 (ν′, t = 0) , (1)

if one utilizes the Goldberger-Treiman relation gAmN =
FπgπN , with mN the nucleon mass, gA the axial-vector
coupling constant, Fπ the weak pion decay constant and
gπN the strong pion-nucleon coupling constant. Further-
more, κv = κp − κn and κs = κp + κn are the nucleon
isovector and isoscalar anomalous magnetic moment, re-
spectively. The FFR sum rule is exact in the chiral limit of
QCD and thus all quantities appearing in eq. (1) are to be
understood in the limit of vanishing light-quark masses,
mq = 0. The FFR sum rule has recently been re-examined
in ref. [2]. In that paper1, pion mass corrections to the
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sum rule were considered (in terms of a discrepancy func-
tion ∆N (ν, t)) and numerical evaluations based on a) dis-
persion relations and b) input from heavy baryon chiral
perturbation theory (HBCHPT) were presented. It was
pointed out that in the strict framework of HBCHPT the
nucleon pole positions are slightly moved, which leads,
e.g., to an incorrect curvature of the discrepancy function
for energies below the threshold. A similar behavior due to
the shift of pole or cut positions in the 1/mN expansion
was observed already in the discussion of the Compton
cusp at the opening of the pion threshold [3], the spectral
functions of the nucleon isovector form factors [4] or the
scalar form factor of the nucleon [5]. Note, however, that
the kinematical factors leading to the corresponding poles
or cuts need not be expanded in HBCHPT as is discussed,
e.g., in ref. [3]. Clearly, in a manifestly Lorentz-invariant
formulation of baryon CHPT such problems do not arise,
see, e.g., [5–7]. The purpose of this paper is twofold: We
analyze the FFR sum rule in the framework of infrared
regularization (IR) of baryon CHPT [5] and demonstrate
that the energy dependence of the discrepancy function
is correctly given. Second, we also take a closer look at
the pion mass corrections to the sum rule, which can only
be systematically calculated in chiral perturbation theory,
and the related threshold multipoles in pion photoproduc-
tion. Our calculation includes all terms at third order in
the chiral expansion and in addition, also the fourth-order
polynomial terms in the photoproduction amplitudes. Our
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aim is to show that within IR baryon CHPT one can de-
scribe pion photoproduction above and below threshold
and that the dispersive representation can indeed be used
to pin down certain low-energy constants (LECs), as sug-
gested in [2]. It is well known that the chiral expansion
converges best in the unphysical region where all momenta
can be very small. Consequently, in such regions LECs
can be determined to a good precision if a correspond-
ing dispersive representation is available. A more refined
treatment including all fourth-order terms and fits to the
existing low-energy data from MAMI will be relegated to
a future publication.

The manuscript is organized as follows: In sect. 2 we
briefly recall the formalism of pion photoproduction and
collect some results for the pion mass corrections to the
FFR sum rule derived in [2]. We also present an alternative
way of looking at these. Section 3 contains the results
on the FFR sum rule, the discrepancy function and the
related electric dipole amplitude E0+ as well as the slopes
of the P -wave multipoles at threshold. We demonstrate
that one can indeed determine LECs from the amplitudes
in the unphysical region and end with a brief outlook.

2 Formalism

Consider pion photoproduction off the nucleon by real
photons with k2 = 0,

γ(k) +N(p1)→ πa(q) +N(p2) , (2)

where p1 (p2) is the four-momentum of the incoming (out-
going) nucleon (N) and a an isospin index (a = +, 0,−).
For the discussion of the FFR sum rule, only the isospin 0
and + channels are of relevance, i.e. the physical channels
γp→ π0p and γn→ π0n. The corresponding S-matrix is
given in terms of four invariant functions Ai (i = 1, . . . , 4)
that depend on two kinematical variables. Throughout,
we utilize the notation of our earlier work [8] and refer
to that reference for a detailed discussion of the pertinent
formalism. These invariant amplitudes can be calculated
in baryon chiral perturbation theory and have the generic
form (we do not display isospin quantum numbers and
kinematical arguments)

Ai = ABorn
i +Aloop

i +Act
i , (3)

where the Born terms subsume the coupling to the charge
and the magnetic moment of the nucleon (note often the
alternative notation of “pole terms” is used for these con-
tributions —sometimes even calculated by employing the
pseudoscalar pion-nucleon coupling). All further countert-
erms are collected in the polynomial terms Act

i . The non-
trivial loop contributions (after renormalization of the

single nucleon properties) are collected in the Aloop
i . In

ref. [8], the Ai were calculated to third order (leading
loop order) in relativistic baryon CHPT. In that formu-
lation, a violation of the power counting through the nu-
cleon mass term is manifest. However, from the integral

representations given in [8], it is straightforward to iso-
late the so-called infrared singular part [5] that contains
the chiral long-distance physics and leads to a one-to-one
correspondence between the expansion in loops and small
momenta/pion masses. This can, e.g., be achieved by the
prescription given in [5] which we also will employ. Sym-

bolically, it reads
∫ 1

0
dx → (

∫

∞

0
−
∫

∞

1
)dx = I + R, with

I and R the infrared singular (irregular) and the regu-
lar part, respectively. For the study of the FFR sum rule
and related aspects, we are interested in the amplitudes at
small energies and momentum transfer and thus use the
variables ν = (s−u)/4mN and νB = −(s+u−2m2

N )/4mN ,
which are odd and even under crossing s↔ u (for further
notation, see [8]). From the crossing properties of the Ai

and their low-energy properties as detailed in [8], one de-
rives the following representation for the polynomial pieces
(note, in particular, the low-energy theorem for A1 [9] that
forbids a constant term):

Act
1 = a1

1ν
2 + a2

1νB + . . . ,

Act
2 = a0

2 + . . . ,

Act
3 = a1

3ν + . . . ,

Act
4 = a0

4 + . . . . (4)

At third order in the chiral expansion, only the leading
term of A4 contributes [8], whereas all other terms writ-
ten down in eq. (4) start at O(q4). The mapping between
these subtraction constants and the low-energy constants
(LECs) used in the heavy baryon calculations [10–12] is
given in the appendix. We remind the reader that although
the contribution of Act

1 formally starts as M2
π at threshold,

in the chiral limit the expansion coefficients are singular
leading to the famous contribution to the low-energy the-
orem for the threshold value of E0+ at next-to-leading
order in the pion mass expansion [9]. We note that Act

2

only feeds into the P -wave slope P̄2 and into the D-wave
at threshold in such a way that it cancels in the FFR sum
rule at finite pion mass. Therefore, the subtraction con-
stant a0

2 has to be determined completely independently
of the FFR sum rule, say by fitting to the slope of P2 at
threshold. In the following, we use the third-order IR rep-
resentation of the pertinent one-loop graphs (which con-
tains an infinite series of 1/mN corrections in the heavy
baryon framework) but also use the fourth-order subtrac-
tion constants displayed in eq. (4). Based on that repre-
sentation, we attempt a simultaneous description of the
ν-dependence of the FFR discrepancy function ∆p(ν, tthr)
(as defined below), the energy dependence of the electric
dipole amplitude E0+ for neutral pion production off pro-
tons and the P -wave threshold slopes as extracted in [13].
Similarly precise information is not available for the neu-
tron, therefore in the following we mostly concentrate on
the proton.

In ref. [2], the FFR sum rule was considered for finite
mass pions and the following representation in terms of a
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discrepancy function ∆N was derived:

◦

κN τ3 +∆N (ν, tthr)

=
4m2

N

eπgπN

∫

∞

νthr

dν′

ν

ν′ Im A
(N,π0)
1 (ν′, t = tthr)

v′2 − ν2
,

∆N (ν, t = tthr)

=
2m2

N

egπN

(

Aloop
1 (ν, t = tthr) +Act

1 (ν, t = tthr)
)

. (5)

A few comments on this equation are in order. First, the
left-hand side of the FFR sum rule gives the anomalous

magnetic moment in the chiral limit, κN =
◦

κN +O(m
1/2
q ).

Therefore, if one uses the physical value of κN as in
ref. [2], one must include the corresponding loop and coun-
terterm corrections into the discrepancy function. How-
ever, for studying the pion mass corrections to the FFR
sum rule, it is more appropriate to work with the chiral-
limit values of κp and κn, as discussed below. Second,
in the chiral limit, t → 0. This value can, of course,
not be achieved in the physical world. We follow [2] and
present our results at the minimal (threshold) value of
t, tthr = −M2

π/(1 + Mπ/m) = −0.016GeV−2. Third,
the Goldberger-Treiman relation is no longer exact at fi-
nite pion mass; to the order we are working, it takes the
form [14,15]

gπN
mN

=
gA
Fπ

(

1−
2M2

π

gA
d̄18

)

, (6)

with d̄18 a LEC. As long as one only works at the physical
pion mass, this effect is taken care of by utilizing the phys-
ical value for the pion-nucleon coupling and the nucleon
mass. If one, however, also wants to study the pion mass
dependence of ∆N , as will be done here, one explicitly has
to include this pion mass dependence. However, this effect
only shows up in the terms cubic in the pion mass, which
will not be considered in detail here (for a more detailed
discussion of this topic, see, e.g., [16]). Note this pion mass
dependence can only be systematically calculated in chiral
perturbation theory and, eventually, in lattice QCD.

We have explicitly worked out the quark mass expan-
sion of the discrepancy function at threshold. For the pro-
ton, it takes the form (modulo chiral logs)

∆p(ν = νthr, t = tthr) = αpMπ + βpM
2
π + . . . (7)

with

αp =
mN

16F 2
π

(

1−
4g2

A

3π

)

,

βp =
1

8π2F 2
π

[

−3−
π2

8
+
(

7−
1

2

◦

κp +
1

2

◦

κn
)

ln
Mπ

mN

]

−
g2
A

48π2F 2
π

[

−
85

3
− π +

5

3

◦

κp −
11

3

◦

κn

+(5 + 7
◦

κp −
◦

κn) ln
Mπ

mN

]

+
c̃4

6π2F 2
π

(

−
10

3
+

3π2

8
+

5

2
ln

Mπ

mN

)

− 8mN (2e105 + e106) +
2mNFπ

gA

(

a1
1 −

a2
1

2mN

)

, (8)

where c̃4 = mN c4 and c4 = 3.4GeV−1 [17]. The LECs
e105 and e106 from the dimension-four chiral pion-nucleon
Lagrangian contribute to the proton and neutron anoma-
lous magnetic moment at next-to-leading loop order (for
a detailed discussion, see [6]). Their values are discussed
below. Further, we have set the scale of dimensional regu-
larization equal to the nucleon mass, λ = mN . Of course,
∆p vanishes in the chiral limit. Notice the absence of chiral
logs in the terms linear in the pion mass. The represen-
tation of ∆p given, eq. (7), is exact to fourth order in
the chiral expansion since it can be reconstructed from
the HBCHPT results obtained in [10–12]. In addition,
to arrive at these results, we had to include the small
contribution from the slope of the D-wave combination
D = M2+ − E2+ − P2− − E2−, that is D̄ = D/q2 at
threshold. It is obtained from the invariant functions by

D(s) =
5

16

∫

dx (x4 − 2x2 + 1)F4(s, x) , (9)

with F4(s, x) a combination of A2,3,4, see [8]. This contri-
bution has not been calculated before. Note further that
eq. (7) includes the terms that renormalize

◦

κp to its phys-
ical value, κp, since we identify the left-hand side of the
FFR with the anomalous magnetic moment in the chiral
limit. The pion mass expansion of ∆n(ν = νthr, t = tthr)
looks very similar; we find

αn =
mN

16F 2
π

(

1−
4g2

A

3π

)

,

βn = −
1

8π2F 2
π

[

7

9
+

π2

8
+
(

−
13

3
+

1

2

◦

κp −
1

2

◦

κn
)

ln
Mπ

mN

]

−
g2
A

48π2F 2
π

[

−
76

3
− π +

11

3

◦

κp −
5

3

◦

κn

+(−1+
◦

κp −7
◦

κn) ln
Mπ

mN

]

−
c̃4

6π2F 2
π

(

−
10

3
+

3π2

8
−

5

2
ln

Mπ

mN

)

+ 8mN (2e105 − e106) +
2mNFπ

gA

(

a1,n
1 −

a2,n
1

2mN

)

, (10)

where the subtraction constants refer to the neutron am-
plitude γn→ π0n as denoted by the superscript n.
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3 Results

First, we must fix our input parameters. We use Fπ =
92.4MeV, Mπ+ = 139.57MeV, Mπ0 = 134.97MeV, mp =
938.27MeV, mn = 939.57MeV, gπN = 13.4, κp = 1.793,
κn = −1.913. To the order we are working, the anoma-
lous magnetic moment of the proton and the neutron are
given in terms of two LECs from the dimension-two chiral
Lagrangian commonly denoted c6 and c7 and loop correc-
tions that start with terms of order M 3

π [18]. From that
one can read off the chiral-limit values for the proton and
the neutron anomalous magnetic moments,

◦

κp= 2.37 ,
◦

κn= −2.84 , (11)

in nuclear magnetons. For comparison, at third order in

HBCHPT, we have
◦

κp= 2.85,
◦

κn= −2.98 [18].
To pin down the subtraction constants in eq. (4), we

perform an overall fit to simultaneously describe the pro-
ton discrepancy function (taken from the dispersive anal-
ysis of [2]), the electric dipole amplitude in the threshold
region and the three P -wave slopes (utilizing the experi-
mental information collected in [13]). This best fit is ob-
tained with the following polynomial contribution to the
invariant functions:

Act
1 (ν, νB) = (191.3νB + 220ν2) GeV−2 ,

Act
2 (ν, νB) = −54.9 GeV−4 ,

Act
3 (ν, νB) = −155ν GeV−3 ,

Act
4 (ν, νB) = 181.5 GeV−3 . (12)

While these coefficients appear large at first glance, in
the appendix we show that they match quite nicely the
corresponding LECs determined in fits to neutral pion
photoproduction differential cross-sections and the photon
asymmetry. Since the LECs can be understood to a good
precision in terms of resonance saturation (excitation of
the ∆(1232) and of vector mesons, see e.g. [10]), the num-
bers appearing in eq. (12) are indeed of natural size. The
threshold values for E0+ and the P̄i (i = 1, 2, 3), i.e. the
values of these multipoles at threshold corresponding to
our best fit, are

E0+ = −1.19 [−1.23± 0.08± 0.03] ,

P̄1 = 9.67 [9.46± 0.05± 0.28] ,

P̄2 = −9.6 [−9.5± 0.09± 0.28] ,

P̄3 = 11.45 [11.32± 0.11± 0.34] , (13)

in the conventional units of 10−3/Mπ+ and 10−3/M2
π+ , re-

spectively. The experimental numbers in the square brack-
ets are from [13]. We note that P̄2 is obtained by adjusting
the subtraction constant a0

2. The corresponding D-wave
slope is

D̄ = 0.66 · 10−3/M3
π+ , (14)

to be compared with 0.96 (0.92) from the MAID03 anal-
ysis (the dispersive analysis of ref. [19]).

Let us look at these results in more detail. For the pion
mass correction to the proton FFR sum rule, we evalu-
ate eq. (5) utilizing the parameters collected in eq. (12).
We find

◦

κp +∆p(ν = νthr, t = tthr) = 2.18 (15)

which should be compared with the left-hand side of the
sum rule, i.e. the proton anomalous magnetic moment in
the chiral limit, cf. eq. (11). Thus, within this framework,
the FFR sum rule is fulfilled within 8%, which is of the
expected size since pion mass effects are proportional to
the small parameter µ = Mπ/mN ' 1/7. Note again that
this way of looking at the FFR differs from what was done
in [2], where the left-hand side of the FFR was identified
with the physical value of the proton anomalous magnetic
moment and the discrepancy function defined there thus

differs from ours by terms ∼
◦

κp −κp.
Next, we display the resulting discrepancy function for

the proton as a function of ν at fixed t = tthr in fig. 1 (for
better comparison with ref. [2], this discrepancy function
is taken with respect to the physical value of the proton
anomalous magnetic moment). At ν = 0, the discrepancy
functions has indeed an extremum (as pointed out in [2])
and it increases with increasing ν. We also find the pro-
nounced cusp effect at ν = νthr, as is expected. In con-
trast to the prediction based on the MAID model (dashed
curved), we do not observe any zero crossing for the val-
ues of the subtraction constants given in eq. (12). Natu-
rally, within our approach we should have a band rather
than a line, but we relegate a detailed error analysis to a
later work, when we will also fit to all data of neutral pion
photoproduction in the threshold region. Interestingly, the
third-order relativistic result from [8] (dot-dashed line) is
very close to the IR result including the fourth-order poly-
nomial pieces. We also note that the incorrect behavior at
ν ' 0 observed in the HBCHPT calculation is of course
not present in our manifestly covariant calculation, as was
suggested already in [2]. Note furthermore that we do not
show ∆P (ν, tthr) for values of ν > 155MeV because at
ν ' 170MeV, a steep rise due to the ∆(1232) resonance
sets in [2]. In the lower panel of fig. 1 we focus on the
threshold (cusp) region. We see that the relativistic and IR
predictions are in good agreement with the MAID model
and also with the data reconstructed form the multipoles
of ref. [13] (for details, see again [2]).

We briefly discuss the pion mass dependence of ∆p,n;
for this purpose, we switch back to the full fourth-order
representation obtained from earlier heavy baryon results.
Consider the proton. We find for the coefficients in eq. (7)

αp = 2.19 GeV−1 ,

βp = (−5.0− 17.3) GeV−2 = −22.3 GeV−2 , (16)

where we have used the physical values for gA and Fπ
and the second term in βp is the contribution from the
dimension-four operators with the LECs e105 and e106.
These counterterms determine the slope of κv and κs in
the soft pion limit. Their values have been determined by
using the fourth-order formula for the anomalous magnetic
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Fig. 1. The discrepancy function ∆p for the proton. Solid
line: IR baryon CHPT. Dot-dashed line: third order relativistic
CHPT [8]. Dashed line: dispersive result based on the MAID
model, from [2]. Upper panel: ν in the range from 0 to 155 MeV.
Lower panel: threshold region (135 MeV≤ ν ≤150 MeV). The
data points are calculated with the S- and P -wave multipoles
from ref. [13] (based on the formalism developed in [2]).

moment from [6] as chiral extrapolation functions for the
lattice QCD data of [20]. We get e105 ' 0.45 , e106 ' 1.4
at λ = mN , which are of natural size. Since these are
only very rough fits to the trend of the lattice data at
too high pion masses, we refrain from assigning a theo-
retical uncertainties to these numbers. Note that in case
of the coefficient βp, we have large cancellations between
the loop and the counterterm contributions proportional
to the LECS ci, which are −21.2GeV−2 and 16.2GeV−2,
respectively, for λ = mN . We also stress that the first
two terms in the quark mass expansion of ∆p at threshold
give −0.13, which is to be compared with the full calcula-
tion that gives −0.19, cf. eq. (15) (where the contribution
from the term ∼ 2e105 + e106 is −0.34). For the neutron,
we have no determination of the photoproduction coun-
terterms and thus we can only give αn = αp = 2.19GeV−1

and βloop
n = −18.23GeV−2. This value is comparable to

the one of the proton. The contribution from the operators
∼ e105, e106 is somewhat smaller than for the proton since
for the neutron they appear with a different relative sign.

Also well described is the energy dependence of the
electric dipole amplitude E0+(Eγ) shown in fig. 2 (with

144 148 152 156 160 164
Eγ  [MeV]
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-0.6
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0

E
0+

  [
10

-3
/M

π]

Fig. 2. The real part of the electric dipole amplitude E0+ in
the threshold region. The solid line is the theoretical prediction
as discussed in the text and the data are from ref. [13].

Eγ = ν−(t−M2
π)/4mN ). This description of the data is as

good as the complete fourth-order HBCHPT calculation
(see, e.g., fig. 3 in [13]). This is not surprising since the
third-order IR calculation generates all fourth-order HB
corrections with fixed coefficients (from the expansion of
the Dirac propagator) and these are the only fourth-order
loop contributions since loops with one insertion propor-
tional to the dimension-two LECs ci do not contribute.
Related to this is the observation that most of the non-
trivial energy dependence is given by the generalized cusp
function [10,12]

E0+(Eγ) = a+ b

√

1−

(

Eγ

Ethr
γ

)2

, (17)

where the parameter a gives the real part of E0+ at
the π+n threshold. The coefficient b parameterizes the
strength of the cusp at the nπ+ threshold. To leading
order, it is proportional to the product of the charge ex-
change scattering length a(π0p→ π+n) and the threshold
value of the electric dipole amplitude for charged pion
production off the proton, E0+(γp → π+n). For a more
detailed discussion, we refer the reader to refs. [21,22].

As noted before, similarly precise information on the
neutron is not available. The predictions for the thresh-
old multipoles are based on resonance saturation, the only
experimental information is from the SAL experiment on
γd → π0d [23] that is consistent with the CHPT predic-

tion |Eπ0n
0+,thr| > |Eπ0p

0+,thr| [24]. We can fit to the energy
dependence of An

1 as predicted by the MAID model and
the threshold multipoles as predicted by CHPT, but in the
absence of more information on the energy dependence of,
e.g., the neutron electric dipole amplitude and any experi-
mental verification of the predictions for the P -wave slopes
based on resonance saturation, the resulting numbers are
highly model dependent and we thus refrain from showing
them here.
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4 Summary and outlook

In this paper, we have studied the FFR sum rule in the
framework of covariant baryon chiral perturbation the-
ory, extending some of the work presented in [2]. We have
worked out the loop corrections to third order in the chi-
ral expansion, corresponding to the leading loop contribu-
tion, supplemented by the polynomial pieces up-to-and-
including fourth order. Since the (sub-)threshold energies
considered here are small, such a procedure is justified
and would only lead to a readjustment of the subtraction
constants defined in eq. (4) if one includes also the fourth-
order loop graphs. We have shown that within this frame-
work one can achieve a good description of the energy
dependence of the discrepancy function for the proton,
defined in eq. (5), together with the energy dependence of
the electric dipole amplitude in the threshold region, cf.
fig. 2, and the P -wave slopes at threshold, see eq. (13). The
corresponding subtraction constants collected in eq. (12)
can be matched to the low-energy constants determined
previously in HBCHPT studies of threshold neutral pion
photoproduction and their resulting values are of natural
size (as detailed in the appendix). We find that the finite
pion mass corrections to the FFR sum rule for the proton
are small, of the order of 8% (cf. eq. (15)). As shown in
fig. 1, the ν-dependence of the discrepancy function for
the proton has the proper behavior and agrees with the
result of the MAID model. The unphysical behavior ob-
served at ν ' 0 in the heavy baryon scheme [2] is absent in
a covariant formulation as presented here. It is also inter-
esting to note that the third-order relativistic calculation
free of counterterms from [8] also gives a good description
of ∆p(ν, tthr). These findings corroborate the conjecture
made in ref. [2] that one can use the dispersive representa-
tion of the invariant amplitudes in the unphysical region
to pin down low-energy constants of chiral perturbation
theory (see also the appendix). It will be interesting to
perform a complete fourth-order calculation and fit the
corresponding LECs to the existing unpolarized and po-
larized threshold data of the reaction γp → π0p. This
should further sharpen the conclusions made here. Work
along such lines is under way [25].

We thank Dieter Drechsel for interesting us in this problem. We
are grateful to Lothar Tiator for supplying us with the results
of ref. [2]. This research is part of the EU Integrated Infrastruc-
ture Initiative Hadron Physics Project under contract number
RII3-CT-2004-506078.

Appendix A. Subtraction and low-energy

constants

Here, we give the mapping between the commonly em-
ployed counterterms of the heavy baryon approach and
the subtraction constants defined in eq. (4). To third or-
der, one has only one P -wave counterterm (with the LEC
bp) that feeds into the multipole P3 [10],

a0
4 = 4π bP . (A.1)

At fourth order, there are two S-wave counterterms
(which in the threshold region essentially act as one con-
stant) [10]. The corresponding LECs a1 and a2 are given
by the following combinations of subtraction constants:

12π a1 = −

(

a0
2 +

a0
4

mN

)

,

12π a2 =

(

3a1
3 + a0

2 + 3a1
1 −

3

2

a2
1

mN
+

5

2

a0
4

mN

)

. (A.2)

Note that in the sum a1 + a2, the contribution from A2

cancels (as noted earlier) and that these relations are to
be taken at λ = mN . Similarly, at fourth order there are
two independent counterterms (with the LECs ξ1 and ξ2)
that modify the P -waves P1 and P2 [12]:

a2
1

2
−mNa1

3 − a0
4 =

gA
16π2F 3

π

ξ1 ,

a0
4

2
+mNa1

3 −mNa0
2 =

gA
16π2F 3

π

ξ2 . (A.3)

At first glance, one might conclude from eqs. (A.2), (A.3)
that there is a mismatch in the number of subtraction
constants and counterterms. Note, however, that various
subtraction constants feed into the S- and the P -waves
so that finally only two independent structures remain for
the S-wave and two for the P -waves.

It is interesting to compare the numbers derived from
eq. (12) with the earlier determinations of these coun-
terterms in the HBCHPT framework. Note, however, that
we did not include all fourth-order loop corrections here,
so that the values of the subtraction constants effectively
subsume some of these effects. This is not the case for the
LEC bP since it already appears at third order. Our value
for a4

0 translates into bP = 14.4GeV−3. This compares
well with the third-order fits of ref. [10], bP = (15.8 ±
0.2)GeV−3, and of ref. [11], bP = 13.0GeV−3. Note that
the corresponding value in [12] comes out smaller due to
additional loop effects. Consider next the LECs contribut-
ing to the electric dipole amplitude in the threshold region.
We get 4πmN (a1 + a2) = 56.2GeV−3 from the constants
in eq. (12) compared to 31.8 GeV−3, 77.8 GeV−3 and
71.2 GeV−3 from [10,11] and [12], respectively. Individ-
ually, we have a1 = −3.67GeV−3 and a2 = 8.43GeV−3,
which is different from but comparable in size to the free
and resonance fits to the various sets of Mainz and Saska-
toon data (compare, e.g., table 1 in [12]). As was already
stressed in these earlier papers, the LECs a1 and a2 can-
not be well determined individually from fits to the data
in the threshold region. Next, consider the P -wave P1. The
determination of ξ1 = 16.6 in [12] translates into a2

1/2 −
mNa1

3 − a0
4 = 175.7GeV−3, which is sizably larger than

the value of 59.8 obtained from eq. (12). This is expected
since in [12] it was shown that there are large cancellations
between fourth-order loop and counterterm contributions,
which we represent by the polynomial term only. This dis-
crepancy is even more pronounced for the combination of
subtraction constants that can be obtained from P̄2. Uti-
lizing ξ1 = −19.7 from [12] and the values from eq. (12),
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we obtain a0
4/2 + mNa1

3 − mNa0
2 = −208.5 GeV−3 and

−3.3 GeV−3, respectively. This shows that the cancella-
tions between the fourth-order loop and counterterm con-
tributions are even stronger in P2 than in P1.
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